.. role:: python(code) :language: python Documentation for TrendMiner Python SDK Core ============================================ The TrendMiner Python SDK Core allows you to interact with TrendMiner via a high-level API from any Python runtime, e.g. from a Python notebook embedded within TrendMiner, custom python calculations etc. Most boilerplate code has been written for you, so you can focus on what is important: getting valuable insights from your time series data. To interact with TrendMiner via this SDK, you will first have to create a :python:`TrendMinerClient` object. The client creation requires the URL of your TrendMiner installation and an `OAuth2 `_ token. However, if you are working from a TrendMiner embedded notebook, we simplified this for you and creating a :python:`TrendMinerClient` is as simple as (note :python:`os.environ["KERNEL_USER_TOKEN”]` is detected and replaced with your current OAuth2 token): .. code-block:: python from trendminer import TrendMinerClient client = TrendMinerClient.from_token(token=os.environ['KERNEL_USER_TOKEN']) If however, you are working from an external environment (or an environment with SSL enabled), you must provide a valid TrendMiner URL and OAuth2 token: .. code-block:: python from trendminer import TrendMinerClient client = TrendMinerClient.from_token(url='https://trendminer.yourcompany.com',token='') Loading a tag ============= .. code-block:: python tag = client.tag.get_by_name("") Loading data of a tag ===================== .. code-block:: python tag = client.tag.get_by_name("") period = ("2019-03-25", "2019-03-26") data = tag.get_data(period, resolution="1m") Performing a Value Based Search =============================== .. code-block:: python from trendminer.sdk.search import ValueBasedSearchOperators from trendminer.sdk.search import LogicalOperators level = client.tag.get_by_name("") vbs = client.search.value(queries=[ (level, ValueBasedSearchOperators.GREATER_THAN, 35), ("", ValueBasedSearchOperators.EQUAL_TO, ""), ], operator=LogicalOperators.AND, duration="2m" ) results = vbs.get_results(("2019-01-20", "2019-01-29")) Loading a TrendHub view as a `pandas `_ dataframe ============================================================================= .. code-block:: python view = client.view.get_by_name("") df = view.get_data()[0] Loading Context items as a `pandas `_ dataframe =========================================================================== .. code-block:: python client = TrendMinerClient(url='https://trendminer.yourcompany.com',token='') chv = client.context.view.get_by_identifier("") items = chv.search_items() df = pd.DataFrame( [{ **item, "start_date": item.interval.start, "end_date": item.interval.end, "total_duration": item.interval.duration, "type": item.context_type, "last_state": item.events[-1].state, } for item in items] ) Overview of packages ==================== .. toctree:: :maxdepth: 3 :glob: api/trendminer Indices and tables ================== * :ref:`modindex`